PRESSURE DEPENDENCE OF THE THERMAL
CONTACT RESISTANCE FOR ROUGH SURFACES
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The contact resistance is expressed analytically as a function of load for elastic and elasto-
plastic contacts by taking the rough surface as consisting of spherical projections with a
normal distribution.

Compression is one method of adjusting thermal contact resistance {1,2]. Here we derive an analytic
expression for the load dependence of the resistance via the geometrical and mechanical features of rough
surfaces.

Itis always possible [3, 4] to replace contact between two rough surfaces by contact without allowance
with a rough one whose projections have the variance

o*=02+0?, 1)

in which Uzi represents the variance for the individual surfaces.

The following equation has been given [1] for the thermal resistance of a contact without allowance
for heat transfer by radiation and via the intervening medium:
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which has been derived on the assumption of a uniform distribution of equal circular contacts. Load in-
crease raises a and n but reduces r, with the sizes of the individual circles having a certain spread around
the mean a, so that the simple summation used in deriving {2) should be replaced by integration on the
basis of the statistical features.

~ Elastic Contact. It has been shown [3,4] that a normal distribution represents closely the distribu-
tion of the heights of the roughness relative to a standard plane, while a single projection may be repre-
sented as a very shallow spherical one. Then [3] the load P; acting on a ridge produces a defcrmation

Py (1—p?) %3 (3)
by =083 | L2117,
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The area of an individual contact is [4] related to bj by
fi=nRb;, fi=2nRb, (4)

for elastic and plastic contacts respectively. In the absence of a load, height of the largest ridge equals
the distance between the standard plane and a smooth plane. A load brings the surfaces together, and this
distance becomes d, so all ridges with heights exceeding d will be in contact with the smooth surface, and
the number of contacts is
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Fig.1. Relative thermal resistance
of contact Re/Ré" versus relative

; AN load P/P* (P* = 2.026 106 N/m?;

o N R% = Ry Ip = p*, m? deg/W).

\ Points show experimental data [1].
—
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The properties of a normal distribution allow one to replace the upper limit of integration by infinity
(z* —=), s0
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Rough values have been given [4] for d/c as a function of load. In general, the contacts are unevenly

distributed over unit area of the nominal surface, but the very simple assumption of a uniform distribution
implies that the following is the radius of the region from which heat flow lines converge on a contact:

| r=—;l/:}l. A7)

The conductance of unit area of nominal surface is the sum of the conductances of the individual
contacts, i.e.,

M=1— (6)
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The actual area of contact in elastic contact is a few per cent of the nominal, so we expand arctan [ (r —a)
/al as a series to get

oy =2 ‘/—ﬁ—lNchﬁexp (—-—ggz—)
X (_1_ % /¢ —d + 1-M Vﬁ), (9)
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where M is defined by (6) and r by (7). The distance d between the surfaces in (9) can be expressed via the
external load as follows for the above model

3/2 R -3 2
(k) A s en )
0,83 20 (1—p?) 20*
d
which is the integral of P; over all the load-bearing projections. Integration gives
2 ( 1 )3/2 NEG(1=M) /5w exp (_ d? ) (11)
3y 2n \ 0.83 1—p? 202

It is best to deduce d(P) graphically because (11) is transcendental.

Similarly, for a4, P, and r we can derive more convenient equivalent expressions if we calculate the
integral of (5) as a Poisson integral, with

2 = k2 . 3
e Y Zuvay 3 (v 428)
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where ®(x) is the probability integral, tabulated in [5].

We have an exponential dependence on d for R = 1/w, which is confirmed by experiment, as in the
P dependence in (11) [1,2]. For d small (P large) we have

S T1. /T 1\ NEUVWHW 19)
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and ¢ is linearly dependent on P:
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This also agrees with experiment. It follows from (9) and (14) that the contact resistance increases with
the roughness.

Elastoplastic Contact. At high levels the projections attain a critical strain b* where plastic strain
starts {3]. The following is the pressure at the center of the contact circle between an elastic sphere and
a rigid plane:

(15)
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The strain becomes plastic if q exceeds the critical value g* = cog, where ¢ is 1-6 and is a factor incor-
porating the projection shape and the interaction of projections. Then when

3 = o 2
d*=z*——b*_—:z*————~——o‘g?911/8:6 Rczof(——-—l EP ) , (16)

we get plastic deformation of the highest projections.

If the nominal pressure is less-than the yield point, the plastically deformed contacts bear [4] a ratio
exp (—b* /o) to the total number, so (4) gives the conductance of unit area of nominal contact as

azzal[l—{«exp (-———T—)} (17)

Also, o falls as the temperature in the contact zone increases, so the critical strain also decreases,
and the conductance increases because there are more plastically deformed projections.

To compare the calculated relation with experimental data we used the measurements given in [1]
{p. 135) for contact between pairs of 1Kh18N9T steel surfaces: A = 17.7 W/m .deg, Hpq =0 = 11.7 10~ em
E =1.9-101 N/m? (at 200°C), and p = 0.3. Unfortunately, the other necessary parameters are not given in
[1]. We estimated the values N = 1.5-10° ecm ™2, R=50-10"% cm, z* =44 -10 % cm and b* = 0.4 10~ em
Various methods of surface treatment tend to give identical roughness height, but with different dispositions
and deformation resistances for the projections and, as the surface treatment was not stated in [1], the
uncertainty in N, R, and z* should be eliminated by comparing theoretical and experimental relationships
in relative units. The unit employed for P in Fig.1 was P* = 2.026 -10° N/m?, while that for R¢ was the
thermal resistance at P = P*, Figure 1 shows that the calculated R.(P) agrees with experiment,
though the Re deduced from (17) with the above parameters were somewhat higher than those of [1].
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Boundary Conditions in Contact Heat Transfer. These results can be used as boundary conditions
where contact resistance is important, e.g. friction, machining, or the theory of thermal stress. They are
readily extended to electrical contacts and heat transfer by radiation and via the intervening media. Let
the last two factors be characterized by the heat-transfer coefficients o, and ag; then the overall coef-
ficient of contact conductance is

a=oa;4+(1—e)(as+a) j=1 2 (18)
For an elastic contact
T ol B
F, = V =5 RN [oexp (— x®)— 5 derfcx] ) (19)
and for an elastoplastic one
F,=F, [l—|—exp (—E—)] . (20)
[

i} J
This method can easily be applied to other models for the surface.

The definition of N makes F; equal to &;.

NOTATION
o standard deviation of projection heights;
Rg contact thermal resistance;
a,r radii of contact spot and of contraction region;
N,n total number of projections and cavities and number of contact spots per unit area of nominal
contact surface;
A effective thermal conductivity of contact zone;
Z, z* height and maximum height of projections;
Pi,bi load per projection and deformation;

E,u,0q4 elastic modulus, Poisson's ratio and yield limit for projection material;
i area of a contact point;

Fj, € relative, actual contact area;

d distance between smooth surface and standard plane of rough surface;

Qyq, 0y contact conductivity of elastic and elastoplastic contacts;

R calculated radius of projection;

P load on contacting surfaces;

b* critical deformation of projection;

q, g* contact pressure at the centre of projection and value at critical deformation;

O,y O coefficients of heat transfer by intermediate fluid and radiation.
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